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Abstract. The second- and fourth-order scalar invariants on curved manifolds with torsion 
are tabulated. Relations among these invariants arising from the Bianchi, cyclic and Ricci 
identities are presented. The number of invariants is seen to be greatly reduced when the 
torsion tensor is taken to be totally anti-symmetric. The large number of fourth-order 
invariants indicates that, in general, the expressions normally obtained during the quan- 
tisation of a gravitational theory including torsion will be extremely cumbersome. There are 
certain exceptions to this statement, however. The most famous example of this is 
supergravity theory. 

1. Introduction 

Einstein’s general theory of relativity has been a very successful theory. However, this 
has not stopped a multitude of efforts to construct a better theory. At the classical level 
we might hope to obtain a simpler theory or perhaps a theory in closer agreement with 
experiment. It could also be that an improved classical theory will lead to the 
much-dreamed-of renormalisable quantum theory of gravity. Finally, it may be 
possible to unify gravity with the other forces of nature only with some expanded 
version of general relativity. 

There are several fairly simple ways to change standard general relativity. One is 
the addition of a cosmological term to the usual Einstein action. (See Christensen and 
Duff (1979b) for a recent discussion of this.) There does not appear to be much 
experimental need for a cosmological constant, nor does it seem to be of any help in the 
renormalisation problem. It is however necessary in certain attempts at unification, 
such as the extended supergravity models (Deser and Zumino 1976, Freedman et a1 
1976). Some calculations in these theories with a cosmological constant are difficult, if 
not impossible, due to the non-existence of a well-defined S matrix, but others, such as 
the computation of one-loop counterterms and gravitational anomalies, are quite easy 
(Christensen and Duff 1979b, Christensen et a1 1980a). 

A second generalisation of standard general relativity can be made by introducing a 
non-zero torsion into the theory. Most of the work on torsion theories has been at the 
classical level. (See Hehl et a1 (1976) for a reiriew.) In this paper we ask the question: 
What will the one-loop structure of a quantised gravitational theory with torsion be? 
We will not do any actual loop calculation to answer this question, since it is already well 
known that at the one-loop level the infinity structure of the functional integral is built 
from the scalar invariants of order four in derivatives of the metric. A priori then, the 
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one-loop counterterm will be a linear combination of these invariants. Thus we will 
need to know what the fourth-order scalar invariants are and what relationships there 
may be between them. This is the obvious first step one must take before proceeding 
with any actual calculation. 

In 0 2 we define our notation. We will be using Misner, Thorne and Wheeler 
conventions wherever possible. Section 3 consists of a list of all possible second- and 
fourth-order scalar invariants constructed from the torsion tensor, Riemann tensor and 
their derivatives. Relationships between these invariants obtained from the Bianchi, 
cyclic and Ricci identities are presented in § 4 along with those invariants which remain 
if we assume the torsion tensor to be totally anti-symmetric. The final section contains a 
discussion of quantum calculations in torsion theories. 

2. Notation 

We will consider a manifold with metric gap and connection r$. In general relativity 
the connection is taken to be symmetric in the lower indices. One obvious way to build a 
new theory is to relax this restriction and allow the connection to have an anti- 
symmetric part. The ‘metric compatibility’ condition 

g 4 ; r  = gap,r --r:vgpp - % g a p  = 0 (2.1) 

used in the standard way gives us 

where [ai} is the usual Christoffel symbol, and 

T,~Y = r rap - F yPu (2.3) 

is the torsion tensor. (Some notations put an overall factor of d on the right-hand side of 
(2.3).) This tensor is obviously anti-symmetric in its first two indices. Equation (2.2) 
tells us that 

(2.4) 

We note that, when the torsion vanishes, the connection is the Christoffel symbol. We 
also note that the symmetric part of the connection is equal to the Christoffel symbol 
only if the torsion is anti-symmetric in all of its indices. 

The Riemann tensor is defined by 

R yppy = r :7,p - r:p,v + r :J :p - r :,J yy (2.5) 

as usual. It has the symmetries 

R aypy = -R yap77 RparP = -Ryapr,  (2.6) 

but, because the connection is no longer symmetric, we will not be able to use 

R P Y F  = R P w w  (2.7) 
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From the Riemann tensor we can build the Ricci tensor 

Rap = R pLppp,  

which, due to the missing symmetry (2.7), is not symmetric, i.e. 

R,, # Rap. (2.9) 

R = R*,. (2.10) 

Finally, the Riemann scalar is 

Throughout this paper we will write either 
with connection I'&. 

or V, to represent the covariant derivative 

3. Invariants 

In the quantum theory of gravity with torsion we are concerned at present with the tree- 
and one-loop levels. In these two cases we will need to know the second- and 
fourth-order invariants constructed from the torsion tensor TaPr, which is of order one, 
the covariant derivative V,, also of order one, and the Riemann tensor R,,,, an 
order-two object. In the lists that follow we use only the anti-symmetry on the first two 
indices of the torsion tensor and the anti-symmetry properties of the Riemann tensor. 
Only in the next section will we use further symmetry relationships or identities. 

At order two we have three tensors from which we can build scalar invariants: 

We see that there are only five such invariants. We would expect there to be many more 
fourth-order invariants, and indeed there are-194 in all! We construct scalars from 
the four-order tensors: 

Table of second-order invariants 

I(1) = 1(2)  = T,,*T,PY 1(3) = T,, ,T@~ 

1(4) = T , ~ , T @  I ( 5 )  = R 

Table of fourth-order invariants 

I ( 6 )  = R;," 
1(7) = Rap;"' 
I ( 8 )  = Repip" 
I ( 9 )  = R 2  
 io) = R,@R,@ 

I( 1 1) = R,,R pff 

I(12) = RaPyfiaPys 
I(13) = R,xpyGRnsYP 
I(14) = TppP;Pyy 

" PY W 5 ) =  TOP ; y  
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1(45) = T ~ ~ ~ ; ~ T ~ ~ ~ ; ~  

1(47) = T,,*R;~ 
1(48) = T$R:;, 
1(49) = T ~ ~ ~ R ~ ~ ; ~  
1(5o) = T,, ,R"~;~ 
1(51) = T , ~ , R * ~ ; ~  
1(52) = T,, ,R~";~ 
1(53) = T ~ ~ ~ R ~ ~ ~ ~ ; ~  
1(54) = T ~ ~ ~ R ~ ~ ~ ~ . ~  

N.3 r ' s  I(55) = TaoYR s ; 

I(%) = T ~ ~ ~ R ~ ~ ~ ~ ; ~  
1(57) = T,,"T:~R 
I(%) = T,,,T"~~R 

1(6i) = T , ~ ~ T ~ ~ ~ R ~ ~  
1(62) = T ~ ~ ~ T ~ ~ ~ R ~ ~  
1(63) = T ~ ~ ~ T ~ ~ ~ R ~ ~  

I(46) = T,pY;sTYsa;P 

I(59) = TuPYTaYPR 
I (60)  = Tapa T',aYR P s  

I(64) = T,paTPysRYs 

1(65) = T , ~ " T ~ , ~ R  
1(66) = T ~ ~ ~ T ~ ~ ~ R ~ ~  
1(67) = T , ~ ~ T ~ ~ ~ R ~ ~  
1(68) = T , ~ ~ T ~ ~ ~ R ~ ~  
1(69) = T ~ ~ ~ T ~ ~ , R ~ ~ ~ '  
1(7o) = T ~ ~ ~ T ~ ~ ~ R ~ ~ ~ ~  
1(7i) = T ~ ~ ~ T ~ ~ , R ~ ~ ~ ~  
1(72) = T , ~ ~ T ~ ~ ~ R ~ ~ ~ ~  
1(73) = T,~*T y s a ~  O y S E  
1(74) = T ~ ~ ~ T ~ ~ . R ~ ~ ~ ~  
1(75) = T , ~ ~ T ~ ~ ~ R ~ ~ ~ '  
I(76)= TaPeTY~eRySPe 
I(77) = T,paTysrRYEPS 
I(78) = T,P"Tys,K 
1(79) = T ~ ~ ~ T ~ , ~ R ~ ~ ~ ~  
1(8o) = T , ~ ~ T ~ , ~ R ~ ~ ~ ~  
1(81) = T , ~ ~ T ~ ~ ~ R ~ ~ ~ ~  
1(82) = T , ~ ~ T ~ ~ ~ R ~ ~ ~ ~  
1(83) = T , ~ ~ T ~ , ~ R ~ ~ ~ ~  
1(84) = T ~ ~ ~ T ~ ~ ~ R ~ ~ ~ ~  
1(85) = T ~ ~ ~ T ~ ~ ~ , :  

1(87) = T ~ ~ ~ T ~ P ~ ; ~ S  

~ ( 8 9 )  = T ~ ~ ~ T ~ ~ ~ ; ~ ~  
1(90) = T ~ ~ ~ T ~ ~ ~ ; ~ ~  
1(9i) = T ~ ~ ~ T ~ ~ ~ ; ~ ~  

1(93) = T ~ ~ ~ T ~ ~ ~ ; ~ ~  
1(94) = T ~ ~ ~ T ~ ~ ~ ; ~ ~  
I(95) = TnpYTYsu;SP 

1(97) = T ~ ~ ~ T ~ ~ ~ ; ~ ~  
1(98) = T ~ ~ ~ T ~ ~ ~ ; ~ ~  

~ ( i o o )  = T ~ ~ ~ T ~ : ; ~ ~  
~ ( i o i )  = T ~ ~ ~ T ~ ~ ~ ; ~ ~  
1(102) = T ~ ~ ~ T ~ ~ ~ , ~ ~  

I(86) = TapYTnYP;: 

I (88)  = TapyTaPS;YS 

I(92) = TnprTOLsY;Ps 

I(96)  = TapuTPys;Ys 

I(99) = TupuT6y6;py 

I(103) = TapYTSYS;uP 
I(104) = TnpYTuYs;Ps 
I(105) = TUpYTOLYs;SP 

I(107) = TupyTuPYT~,S;E 
I(108) = T,pyTaYPTg,s;E 

~ ( 1 0 6 )  = T ~ ~ ~ T ~ P ~ T ~ E S ; ~  

I ( I O ~ )  = T ~ ~ ~ T ~ ~ ~ T , ~ ~ ; ~  
~ ( i i o )  = T ~ ~ ~ T ~ ~ ~ T , ~ ~ ; ~  
r ( i  11) = T , ~ ~ T ~ ~ ~ T ? ; "  
1(112) = T ~ ~ ~ T ~ ~ ~ T ~ ~ ~ ; ~  
~ ( i  13) = T ~ ~ ~ T ~ ~ ~ T ~ ~ ~ ; ~  
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I(181) = 
I(182) = 
I( 183) = 
I(184) = 

T ,;;T T,+ T K y s  

T , P y ~ a s , ~ K P S ~  KeS 

T a r P y ~ a s s  T,~'T KsY 

T,,,T a 6 r ~ K P S ~  KcK 

I(187) 
I(188) 
I( 189) 

4. Relationships between invariants 

A quick glance at the list of fourth-order invariants shows us that some of the invariants 
may be written as a linear combination of others. There are three sources of relations 
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between invariants which we shall consider here: the Ricci identity, the Bianchi identity 
and the cyclic identity. All these are different in torsion theories from the more familiar 
ones of torsion-free theories. Using the definitions (2.3) and (2.5) and the definition of 
the covariant derivative of a tensor 

- v, ,... - - v , ~ . . . ~ ~ ; ~  -r:lpvYa2...bln . . . - ~ : N p ~ a l . . . m n - l y ,  

it is a straightforward though slightly tedious process to prove: 

the Bianchi identity 

R p a p ; y  + R pwpy; ,  + R wYya;p  = - TapPR p y p -  Tp,PR pvap - TyaPR puppy 

the contracted Bianchi identity 

R - R p y ; a  + R pvay;  = - TavPRFuvp - TyyPRpuap + TYaPRpp, 

the doubly contracted Bianchi identity 

R ;, - 2 R pLy ;p = T,,,R pwpy + 2 TyvpR 

the Ricci identity 

Val...aN;yp - Vu1 ... a N ; p y  

= TpyPVal...aN;p + VPa2...pNRalppy + - . - + Val...aN-lPRaNppy, 

the cyclic identity 

RlLoPr + RlLPra + RPV4 

= -  T,pp;;r - Tpyp;a - T-pp;p + Tap'TTYp + Tp/TTap + TyarTTpp, 

the contracted cyclic identity 

R,, - R,, = - T , ~ ~ , ,  - T&, - T , , ~ , ~  + T,~'T~: + T ~ , ' T ~ ~ ~  + T,,'TJ 

It is obvious that when Tapr = 0 these identities reduce to the usual identities and 
symmetries of Einstein's theory. 

From the Ricci identity we obtain the relations: 

1(8)=1(7)+1(50)+1(10)-1(11), 

1(15)=1(14)-1(33)+1(102)+1(21)+1(49), 

I(16) = I(15)+ 1(101)+ I(21) - 1(22), 

1(17)= -~1(41)-~1(88)-1(25)-1(50)+~1(29)-~1(54), 

I(18) = 1(17)-1(91)-1(23)+1(24), 

1(19)=1(18)+1(44)+1(90)-1(23)+1(24)+1(28)+ I(51) 

- I(52) - 1(53), 

I(89) = I(88) + 1(140)+ 21(70) - 1(61), 

I(91) = I(90) - I(137) - I(80) -1(63)  + 1(71), 

1(93) = I(92) - I(130) + I(84) -. 1(67) + 1(72), 

1(105) = I(104)-I(135)-1(80)+1(81)-1(62), 

(4.8) 

(4 9) 
(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 
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I(97) = I(96) + I( 145) + I(73) + I(64) - I(65), 

I(98) = -;1(148)-1(66)-$1(74), 

(4.18) 

(4.19) 

I(100) = 1(99)+1(109)-1(60), (4.20) 

I(102) = I(101) -1(120) - 1(73), 

I( 103) -;( 1 18) + iI(74). 

(4.21) 

(4.22) 

From the Bianchi identities: 

I(6) = 21(7) + I(26) - I (55)  + 21(23) -2I(51), 

I(47) = 2I(48) - I(76) + 21(64), 

(4.23) 

(4.24) 

I(50) - 1(5  1) - I(53) = I(70) + I (80)  + I(63), 

21(52) - I(54) = -21(71) + I(61). 

(4.25) 

(4.26) 

From the cyclic identities: 

I(8) I(7) + I(16)- I(15) - I(19)- I(103) -1(98), (4.27) 

I(ll)=I(lO)+ I (22)-1(21)-1(25)-1(66) ,  (4.28) 

I(22) = 1(21)+1(32)-I(31)-1(35)+1(116), 

I(25) = 1(35)+;1(39)+41(114), 

(4.29) 

(4.30) 

I(24) = 1(23)+1(34)-I(33)-I(38)-1(114), (4.3 1) 

1(49)~1(48)+1(87)-1(99)+1(97)+1(116)-1(147)-1(152)+1(110), 
(4.32) 

I (50)  = I (  10 1) + iI(89) + ;I( 148) + $I( 1 1 8), (4.33) 

- I( 119), (4.34) 

(4.35) 

(4.37) 

I(52) = I(51) +I(103) - I(102) + I(105)- I(133) - I(138) -I(149) 

I(63) = I(62) + I(120)- I(119) - I(123)- 1(179), 

I(66) = - I(116) +iI(114)- 1(160), 

I(65) = I(64) +1(110) - I(109) -I(113)+ I(163), (4.36) 

I(12)-21(13) = 21(27)-I (29) -21(81)-1(82) ,  (4.38) 

1(26)-1(27)+1(28) =1(42)-1(46)-1(43)+1(139)-1(135)+1(134), 
(4.39) 

I(29) - 21(27) = 21(45) - I(40) + 2I(136) + 1(141), 

I(69) - I(70) + I(71) 

(4.40) 

= I( 133) - I(128) - I( 134) + I( 187) - I(175) - I( 186), (4.41) 

I(72) - I(69) - I(71) 
= I(131) -I(130) -I(129)+ I(185) + I(191) - I(175), (4.42) 

I(73)-1(75)+1(74)= -1(148)+21(149)-21(179), (4.43) 

1(76)+1(73)-1(77)= -1(145)-I(147)-1(151)+1(176), (4.44) 
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1(79)-1(80)+1(81)= -1(137)-1(135)+~(139)-I(194) 

- I ( 1 99) + I ( 1 92), (4.45) 

1(82)-21(80)= -21(138)- I(140)-21(193)+1(167), (4.46) 

1(83)-21(84)= 21(143)-I(142)-1(196)+1(168)-1(182), (4.47) 

1(55) +1(53)-1(56)= 1(50)+ I(94)-1(86)+1(126)+1(134) 

- I (  135) + I (  139). (4.48) 

Finally, two simple symmetry relations: 

1(75) = 1(73), (4.49) 

I(78) = I(77). (4.50) 

We have 43 relations, thus reducing the total number of fourth-order invariants from 
194 to 151. 

If we were to restrict the torsion tensor to be anti-symmetric on all of its indices, we 
would reduce the number of invariants to 21. All fourth-order invariants may be 
written as a linear combination of 1(6), 1(7), 1(9), 1(10), I(12), 1(25) ,  1(26), 1(39) ,  
1(40), 1(44), 1(50),  1(58) ,  1(61), 1(69), I(70), 1(85 ) ,  I ($$) ,  I(128), 1(157), 1(165), 
I(180). 

5. Discussion 

We can now see that any calculation involving fourth-order invariants in a torsion 
theory has the potential for being miserably complicated. Of course, it may be that not 
all of the invariants will appear in calculations we might perform. Can we determine if 
quantum field theoretic calculations will really be as cumbersome as the lists of 0 3 
indicate? The answer is yes. 

We consider the calculation of the one-loop counterterms in quantum gravity with 
torsion. It is by now very well known that these counterterms are determined by the 
so-called b4 coefficient in the asymptotic expansion of the heat kernel. (See Christensen 
and Duff (1979a) for a detailed discussion of this.) This calculation has been done for 
the case when the torsion is totally anti-symmetric (Goldthorpe 1979). It was found 
that all of the invariants that could appear, did appear. Preliminary calculations in the 
more general case indicate that all invariants will appear. This clearly does not bode 
well for a successful quantisation of torsion theories. They are just too messy! 

However, there are ways to get around this problem. The most obvious is to put 
restrictions on the torsion tensor such as the totally anti-symmetric condition. One 
would have to provide some strong physical reason for doing this of course, and even 
this strong condition does not simplify our expressions that much. There are still 21 
invariants to contend with. 

If we think a bit more, we will come upon another way to ‘simplify’ our problem. 
Supergravity theories are torsion theories. If we put a powerful restriction like 
supersymmetry on our thoery, we may be able to eliminate many of the possible 
counterterms. Those invariants which cannot be put into a supersymmetric combina- 
tion with others cannot appear in the counterterms. If we study Goldthorpe’s cal- 
culation, we see that nearly all of the invariants appear multiplied by the unit matrix for 



Scalar invariants on manifolds with torsion 3009 

each field of spin s considered. Such terms always vanish when these fields are put 
together into supersymmetric multiplets. Thus we see why supergravity is simple in its 
one-loop structure. 

Finally, we note that we have not mentioned pseudoscalar invariants, which also can 
play an important role in quantum theories, nor have we discussed consistency 
conditions relating the quantum fields propagating in the gravitational field to the 
Riemann tensor and torsion tensor of that gravitational field. (These conditions may be 
a source of simplification.) We only mention that there are also a huge number of 
pseudoscalars possible. This fact certainly will compound our problems. These topics 
will be discussed in a future publication (Christensen et al 1980b). 
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